Reflection Grating Development Update

Ralf K. Heilmann, Mireille Akilian, Chih-Hao Chang, Craig R. Forest, Chulmin Joo, Juan C. Montoya, Amir Torkaman, and Mark L. Schattenburg

Space Nanotechnology Laboratory, Center for Space Research Massachusetts Institute of Technology, Cambridge, MA

Constellation-X Facility Science Team Meeting GSFC, Nov. 19-20, 2003

Constellation-X Telescope and Reflection Grating Geometry

Super Smooth Reflection Grating Fabrication Results - In-Plane

Mechanically Ruled and Replicated (XMM Grating - Old Technology)

Anisotropically Etched (MIT Grating - New Technology)

In-Plane (shown above): period = 1.7 μ m, blaze angle = 0.7 deg Off-Plane: period = 0.2 μ m, blaze angle ~ 7 deg

Super-Smooth Blazed Reflection Gratings From Miscut Silicon

SEM of Blazed Cr/Au-Coated Off-Plane Grating

Grating Replication with Nanoimprint Lithography

1. Add polymer to the surface

3. Remove mold

2. Close the gap, cure polymer with UV light

Atomic Force Microscopy (AFM) Results: Microroughness

silicon mandrel

NIL replica

$$\sigma$$
 = 0.15 nm

$$\sigma$$
 = 0.16 nm (0.17 nm with Au coating)

COMPARISON OF DIFFRACTED ORDER EFFICIENCIES (1,1+2,1+2+3,1+2+3+4)

Diffraction Efficiency Measurements

(Advanced Light Source, LBL, A. Rasmussen *et al.*)

Simulations predict off-plane polarization sensitivity

Current synchrotron data:

TE polarization (lower efficiency)

Future studies:

Measure efficiency in TE and TM polarization

(NRL beamline at NSLS)

Absolute efficiency in the -1, -2, and -3 orders of a 5000- gr/mm triangular grating with 7° working facet angle and 5 A rms roughness (off-plane geometry)

From: L. I. Goray, "Rigorous efficiency calculations for blazed gratings working in in- and off-plane mountings in the 5–50-Å wavelengths range," Proc. SPIE 5168

Grating Replication: Why Nanoimprint Lithography?

Goals:

grating substrate bow < 0.25 ∞m roughness < 0.5 nm feature size < 100 nm

Traditional epoxy replication:

- 10 40 ∞m thick films
- 1 2 ∞m thickness variation
- thin films stress (shrinkage)
- outgassing
- feature fidelity?
- roughness?

Nanoimprint Lithography:

- films $< 0.1 \infty m$ thin
- thickness variation << film thickness
- reduced bowing from thin films stress
- reduced outgassing
- excellent feature fidelity (< 10 nm)
- roughness < 0.5 nm

Nanoimprint Lithography Study

- Produce and characterize grating mandrels

AFM

groove profile microroughness

Shack-Hartmann

substrate figure flatness out-of-plane distortions

Nanoruler

grating phase map particle defects in-plane distortions

- NIL vendors fabricate replicas
- We characterize replicas (AFM, SH, Nanoruler)
- First samples are being replicated

Scanning Beam Interference Lithography with the Nanoruler (fixed period)

Patterning gratings with Variable-Period Scanning Beam Interference Lithography (VP-SBIL)

In-plane geometry: chirped grating

 p_{ave} ~2 μm Chirp $\Delta p/p$ ~5% Blaze ~0.7°

Off-plane geometry: radial grating

 p_{ave} <0.2 μm Chirp $\Delta p/p \sim 2\%$ Blaze $\sim 10^{\circ}$

Writing General Periodic Patterns with SBIL

(a) Linear Chirped Grating

(b) Curved Chirped Grating

Variable Period - SBIL Concept

i-vosbil.ep

VP-SBIL detail: Heterodyne fringe locking system

Modular Assembly

Assembly truss

Flight module

Assembly Truss and Alignment of Foil Optic to Reference Surface

Foil Optic Deformation

- Gravity sag
- Thermal expansion mismatch between foil and constraint
- Friction from physical manipulation (assembly, etc.)

Foil Deformation Examples

Thermal expansion mismatch

Friction

Holding foil optics for metrology

Air bearing design overview

Flexures improve placement repeatability

Replace optics: repeatability ~ 10 - 20 nm!

Fully "dynamic" test (no side flexure): 60 nm (pitch); 0.6 ∞m (yaw)

Overall angular accuracy: 1-2 ∞m (reference surface flatness ~ 1.5 ∞m)

Summary:

- Fabricated efficient reflection gratings for in-plane and off-plane geometries
- Studying high-fidelity, low stress replication technologies (large-area Nanoimprint Lithography)
- Completed preliminary design of variable-period patterning system (chirped/radial gratings)
- Developing low-distortion foil optic metrology and alignment technologies